skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM ET on Friday, February 6 until 10:00 AM ET on Saturday, February 7 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Wu, H"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The development of lithium-ion battery technology has ensured that battery thermal management systems are an essential component of the battery pack for next-generation energy storage systems. Using dielectric immersion cooling, researchers have demonstrated the ability to attain high heat transfer rates due to the direct contact between cells and the coolant. However, feedback control has not been widely applied to immersion cooling schemes. Furthermore, current research has not considered battery pack plant design when optimizing feedback control. Uncertainties are inherent in the cooling equipment, resulting in temperature and flow rate fluctuations. Hence, it is crucial to systematically consider these uncertainties during cooling system design to improve the performance and reliability of the battery pack. To fill this gap, we established a reliability-based control co-design optimization framework using machine learning for immersion cooled battery packs. We first developed an experimental setup for 21700 battery immersion cooling, and the experiment data were used to build a high-fidelity multiphysics finite element model. The model can precisely represent the electrical and thermal profile of the battery. We then developed surrogate models based on the finite element simulations in order to reduce computational cost. The reliability-based control co-design optimization was employed to find the best plant and control design for the cooling system, in which an outer optimization loop minimized the cooling system cost while an inner loop ensured battery pack reliability. Finally, an optimal cooling system design was obtained and validated, which showed a 90% saving in cooling system energy consumption. 
    more » « less
  2. We report observations of crystal defect induced modifications in the laser-excited Er3+ photoluminescence spectra of single-crystal Er2O3 thin films. These include marked enhancement of transition intensities known to be weak or nonexistent in as-grown samples. In this Letter, we examine the temperature and defect density dependence of the measurements and suggest photophysical processes that may account for these unexpected results. 
    more » « less
  3. Few techniques are available for studying the nature of forces that drive subcellular dynamics. Here we develop two complementary ones. The first is femtosecond stereotactic laser ablation, which rapidly creates complex cuts of subcellular structures and enables precise dissection of when, where and in what direction forces are generated. The second is an assessment of subcellular fluid flows by comparison of direct flow measurements using microinjected fluorescent nanodiamonds with large-scale fluid-structure simulations of different force transduction models. We apply these techniques to study spindle and centrosome positioning in early Caenorhabditis elegans embryos and to probe the contributions of microtubule pushing, cytoplasmic pulling and cortical pulling upon centrosomal microtubules. Based on our results, we construct a biophysical model to explain the dynamics of centrosomes. We demonstrate that cortical pulling forces provide a general explanation for many behaviours mediated by centrosomes, including pronuclear migration and centration, rotation, metaphase spindle positioning, asymmetric spindle elongation and spindle oscillations. This work establishes methodologies for disentangling the forces responsible for cell biological phenomena. 
    more » « less
  4. Audio-visual representation learning aims to develop systems with human-like perception by utilizing correlation between auditory and visual information. However, current models often focus on a limited set of tasks, and generalization abilities of learned representations are unclear. To this end, we propose the AV-SUPERB benchmark that enables general-purpose evaluation of unimodal audio/visual and bimodal fusion representations on 7 datasets covering 5 audio-visual tasks in speech and audio processing. We evaluate 5 recent self-supervised models and show that none of these models generalize to all tasks, emphasizing the need for future study on improving universal model performance. In addition, we show that representations may be improved with intermediate-task fine-tuning and audio event classification with AudioSet serves as a strong intermediate task. We release our benchmark with evaluation code and a model submission platform to encourage further research in audio-visual learning. 
    more » « less
  5. The manifold scattering transform is a deep feature extractor for data defined on a Riemannian manifold. It is one of the first examples of extending convolutional neural network-like operators to general manifolds. The initial work on this model focused primarily on its theoretical stability and invariance properties but did not provide methods for its numerical implementation except in the case of two-dimensional surfaces with predefined meshes. In this work, we present practical schemes, based on the theory of diffusion maps, for implementing the manifold scattering transform to datasets arising in naturalistic systems, such as single cell genetics, where the data is a high-dimensional point cloud modeled as lying on a low-dimensional manifold. We show that our methods are effective for signal classification and manifold classification tasks. 
    more » « less